Refinement of seminorm and numerical radius inequalities of semi-Hilbertian space operators
نویسندگان
چکیده
Abstract Let ???? be a complex Hilbert space and A non-zero positive bounded linear operator on . The main aim of this paper is to discuss general method develop -operator seminorm -numerical radius inequalities semi-Hilbertian operators using the existing corresponding Among many other we prove that if S , T X ? ???? ( ), i.e., -adjoint exist, then 2 ? S ? A X T ? + . $$2\|S^{\sharp_A}XT\|_A \leq \|SS^{\sharp_A}X+XTT^{\sharp_A}\|_A.$$ Further, 1 4 8 ( ? minsize="2.047em">) c maxsize="1.2em" minsize="1.2em">( minsize="1.2em">) w stretchy="false">( stretchy="false">) $$\begin{align*} & \frac{1}{4}\|T^{\sharp_{A}}T+TT^{\sharp_{A}}\|_A\\ \frac{1}{8}\bigg( \|T+T^{\sharp_{A}}\|_A^2+\|T-T^{\sharp_{A}}\|_A^2\bigg)\\ \|T+T^{\sharp_{A}}\|_A^2+\|T-T^{\sharp_{A}}\|_A^2\bigg) +\frac{1}{8}c_A^2\big(T+T^{\sharp_{A}}\big)+\frac{1}{8}c_A^2\big(T-T^{\sharp_{A}}\big)\leq w^2_A(T). \end{align*}$$ Here w (?), c (?) ??? denote radius, -Crawford number seminorm, respectively.
منابع مشابه
some properties of fuzzy hilbert spaces and norm of operators
in this thesis, at first we investigate the bounded inverse theorem on fuzzy normed linear spaces and study the set of all compact operators on these spaces. then we introduce the notions of fuzzy boundedness and investigate a new norm operators and the relationship between continuity and boundedness. and, we show that the space of all fuzzy bounded operators is complete. finally, we define...
15 صفحه اولSome improvements of numerical radius inequalities via Specht’s ratio
We obtain some inequalities related to the powers of numerical radius inequalities of Hilbert space operators. Some results that employ the Hermite-Hadamard inequality for vectors in normed linear spaces are also obtained. We improve and generalize some inequalities with respect to Specht's ratio. Among them, we show that, if $A, Bin mathcal{B(mathcal{H})}$ satisfy in some conditions, it follow...
متن کاملFurther inequalities for operator space numerical radius on 2*2 operator matrices
We present some inequalities for operator space numerical radius of $2times 2$ block matrices on the matrix space $mathcal{M}_n(X)$, when $X$ is a numerical radius operator space. These inequalities contain some upper and lower bounds for operator space numerical radius.
متن کاملSharper Inequalities for Numerical Radius for Hilbert Space Operator
We give several sharp inequalities for the numerical radius of Hilbert space operators .It is shown that if A and B are bounded linear operators on complex Hilbert space H , then 1 2 1 2(1 ) 2(1 ) 2 2 2 2 1 ( ) 2 ( ) 2 r r r r r r w A B A B A B A B α α α α − − − ∗ ∗ ⎛ ⎞ + ≤ + + + + + ⎜ ⎟ ⎝ ⎠ , for 0<r 1 ≤ and ( ) 1 , 0 ∈ α , and if ( ) n A M ∈ , then 2 1 ( ) 4 w A ≤ ( ) 2 2 A A A A ∗ ∗ + + − , ...
متن کاملInequalities for the Norm and Numerical Radius of Composite Operators in Hilbert Spaces
Some new inequalities for the norm and the numerical radius of composite operators generated by a pair of operators are given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Slovaca
سال: 2022
ISSN: ['0139-9918', '1337-2211']
DOI: https://doi.org/10.1515/ms-2022-0067